nainglinaung
9Math Q04-1001
Chapter 4
Logarithms
- If the number 31200 is put in the form 3.12 ×10n, the value of n is
A. 1 B. 2 C. 2 D. 4 E. 5 - The scientific notation 3.5 ×103 multiplied by 3 is
A. 1.05 ×102 B.1.05×1010 C. 1.05×103 D.1.05×109 E. 1.05×104 - The scientific notation 8.2×10-4 + 5.4×10-4=………
A.1.35×10-5 B. 1.36×10-4 C.1.36×10-3 D.1.36×10-7 E.1.36×103 - Which of the following is (are) true?
A.log〖(xy) 〗=logx + logy B. (logx )^n = n logx C. log_101=0
D.log_xx=1 E.log(x/y)= logx-logy - Which of the following is (are) true?
1.logM/logN =logM-logN 2.log∛M=3 logM 3.log_√aM =2log_aM
A. 1 only B. 2 only C. 3 only D. 1 and only E. None of them
6.Which of the following is (are) true?- log_4x=2log_16x 2. log_bx=3 log_(b^3 )x 3. log_416= log_164
A. 1only B. 2 only C. 3 only D. 1 and 2 only E. 1 and 3 only
- log_4x=2log_16x 2. log_bx=3 log_(b^3 )x 3. log_416= log_164
- 〖10〗^(1+log_103 )=……..
A.3 B.30 C. 3/10 D.10/3 E.15
8.(4)^log_23 =……..
A.3 B.-6 C.9 D.12 E.15 - log_35× log_2527=………….
A.3/2 B.2/3 C.5/27 D.3/25 E. 5×27
10.If x=log_ba,y=log_cb,z=log_ac, then xyz=…………
A. 0 B. 1 C.-1 D. abc E. a+b+c - If log2=a, then =…….
A.a^2 B.2.5a C.1+a D.1-a E.1/2 a
12.If log2=a, log3=b, then log144=………….
A. a^4 b^2 B.4a+2b C.8ab D. a^2 b^2 E. None of them - 3+log_25=……..
A.log_240 B.log_24 C.log_2150 D. log_215 E.log_260 - log0.01=………
A. 2 B. -2 C.1/2 D.-1/2 E.0 - log_240+log_20.1+log_20.25=……….
A. 0 B. 1 C.2 D. 3 E.4 - log_2〖2√2〗=………
A. 2/3 B.1 C.1 1/2 D.-3/2 E.-2/3 - log_(x-2)(2x^2-10x+13) = 1; x=?
A.-3 B.-5/2 C. 5/2 D. 2/5 E. 3 or5/2 - If log2=m , then log_85 =………
A. (1-m)/3m B.1/3m C. (3-m)/m D. (1-m)^3 E.(3-m)/m
19.Solve logx×log(12x+7) =1
A. 1/3 (or) -2/3 B. 2/5 (or) 2/3 C.-5/4 D.2/3 E. 2/3 ( or) -5/4
20.If log_10x<0 , then
A. x<0 B.-1<x<0 C. -1<x<1 D. 0<x<1 E. x>1
If log_10x=0.35, then log_10√x=……….
A. -1.75 B.-0.175 C. 0.175 D. 3.5 E. 0.7Simplify (log√x+log〖x^(3/2) 〗)/(4 log√x )
A.logx B.1 C.0 D.1/2 logx E.2Solve the inequality xlog_100.1>log_1010.
A. x<-1 B. x<1 C. x>1 D. x>100 E. x>-1If log(p+q)= logp-logq , then p=……….
A. p=q=1 B. p=q/(1-q) C. p=q^2/(1-q) D. p= q/(1+q) E. p=q^2/(1+q)
25.If loga=5, logb =3, then the value of a/b is
A. 5/3 B. 2 C. 8 D. log〖5/3〗 E.100Given that log_a2 =0.301 and log_a3 =0.477, then =……..
A. 0.125 B. -0.125 C. 0.301 D. -1.125 E. 1.125If 2log_p8-log_p4=2, then p=……….
A. 4 B. -4 C. 4 (or) 2 D. 4 (or) -4 E. 2log_(1/9)((x-1)/(x+2)) = 1/2; x=………
A. 1/2 B. 3/2 C. 5/2 D. 7/2 E. 9/2log_3(9^x-22)= x+2 ; x=…………
A. log_113 B. log_311 C.log3 D.log11 E. 0
30.If log2=m, log3=n, then log720 =……….
A. m+n+1 B. 3m+n+1 C. 2m+3n+1 D. 3m+2n+1 E. 3m+2n-1log_29 =a , log_26=………..
A. 1/(a+2) B.(a+2)/2 C. -a D. a+1/2 E. 2alog(0.04/0.4)=…….
A. -3 B. -2 C. -1 D. 1 E.4log_55+log_31+log_416=…….
A. 0 B. 1 C. 2 D. 3 E.4If log2.7 =0.431 , then log√2.7 =………
A.1 ̅ .431 B.-0.215 C.0.2155 D. 0.862 E.-0.862
35.If log0.80 = 1 ̅.903 , then log〖(0.80)^2 〗=…….
A. 2 ̅.806 B. 3 ̅.806 C. 2 ̅.903 D. 1 ̅.806 E. 3 ̅.903If log9=0.954 and log2 =0.310, then log1.8=…….
A. 0.644 B. 1 ̅.264 C. 0.264 D. 2 ̅.264 E. -0.264
37.Given log40=1.602 and log30=1.477, then log(40/3)=……..
A. 0.125 B. 1 ̅.125 C. 2.215 D. 1.125 E. None of these
38.Given that log8=0.908 , then log〖(0.08)^(1/2) 〗=………
A. 3 ̅.454 B. 2 ̅.454 C. 0.454 D. 1.454 E. 1 ̅.454
39.If x^0.6=4, then log_4x=…….
A. 3/5 B. 4 C. 5/3 D. -5/3 E.-3/5log_2(4x-4)=2, then log_2x=…….
A. 2 B. -2 C. 2/2 D. -1/2 E. 4If log5=0.699, then the value of log500=……..
A. 1.699 B. 2.699 C. 6.99 D. 69.9 E. 699log_a2=0.301 , log_a3=0.477, then log_a1.5 =…………..
A. 0.778 B.0.176 C.0.602 D.0.954 E. None of themIf log5=0.699 and logx=0.233, then x=………….
A. 3 B.5 C. 5^(1/3) D. 5^(1/5) E. 5/34 ̅.5-3 ̅.2=……….
A. 1.3