The Phone Charger of the future!
HAVING TO PLUG your phone in every night probably bums you out. Near-field wireless chargers like the ones Samsung sells are cool, but short-range. Like, the phone has to be sitting on the plate, at which point, you could just plug it in. And while some science is out there that says devices might be able to harvest electricity from ambient Wi-Fi, that just doesn't provide enough power.
One possible solution? Here is a hint: Pew pew!
A team of electrical engineers at the University of Washington are suggesting that, yes, the solution to all your charging problems is lasers. "You could build a phone case that had the receiver integrated into it, and then buy the laser setup," says Vikram Iyer, the lead author of a paper the team wrote about the idea. (He works in the same big lab that came up with a cell phone that doesn't need batteries.) "Obviously you'd want to make that smaller, nicer, and prettier, but it could be a standalone thing, like a Wi-Fi router."
In other words, you put your phone down anywhere in a room, the laser finds the phone, and beams its collimated light into a photovoltaic cell—like a solar cell but tuned for a focused dose of near-infrared.
Just one little obstacle: You have just mounted an eyeball-bursting laser turret in the corner of your room, and it is shooting at you. Why not just hook it to the Internet of Hackable Robot Doom Things while you're at it, genius?
Other people have pitched lasers as a way to power stuff as cool as satellites and drones, or to transmit space-harvested solar power back to Earth. But of course, none of that happens on your dining room table.
But the UW team has thought of your safety. Actually, this is kind of cool.
They wanted to be able to deliver roughly 1 watt of power to a receiver just about the size of your pinky fingernail, efficiently enough to charge a device. A near-IR laser capable of delivering the 4.3 watts per square centimeter that could make the math work would be both invisible and able to damage a human eye in less than 10 microseconds. That's wicked fast.
So the question is, how do you detect a human being in the beam's path and shut it down, shut them all down, before you're blinded by the light?
The solution? Pew pew.
That's right. More lasers, but lower-power, nowhere near enough to break eyes or burn skin. They mounted retroreflectors, basically three-sided cube-corners with mirrored inner surfaces, around the photovoltaic cell. Unlike regular flat mirrors, which bounce light away at the same angle it hits them, retroreflectors send light back on the path whence it came—"exactly the kind of reflectors you have on bikes and road signs," Iyer says. Pew pew; pew pew. These retroreflectors form a harmless tube of light around the more powerful, flesh-singeing laser beam, surrounding it like a forcefield. Anything breaks that outer barrier, the emitter cuts the power to the main raygun.
Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested in:
https://www.wired.com/story/wireless-charging-with-lasers/
That revolutionary like SmartCash...both development makes promote a real freedom. SmartCash bring financial freedom through SmartRewards and Masternode while that wireless charger deliver freedom from wire of course makes reading on #smartcash tag more comfortable while charging.