World greatest issue

in #world7 years ago

Global warming, also referred to as climate change, is the observed century-scale rise in the average temperature of the Earth's climate system and its related effects. Multiple lines of scientific evidence show that the climate system is warming. Many of the observed changes since the 1950s are unprecedented in the instrumental temperature record which extends back to the mid-19th century, and in paleoclimate proxy records covering thousands of years.

In 2013, the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report concluded that "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century." The largest human influence has been the emission of greenhouse gases such as carbon dioxide, methane and nitrous oxide. Climate model projections summarized in the report indicated that during the 21st century, the global surface temperature is likely to rise a further 0.3 to 1.7 °C (0.5 to 3.1 °F) in the lowest emissions scenario, and 2.6 to 4.8 °C (4.7 to 8.6 °F) in the highest emissions scenario. These findings have been recognized by the national science academies of the major industrialized nations and are not disputed by any scientific body of national or international standing.

Future climate change and associated impacts will differ from region to region around the globe. Anticipated effects include increasing global temperatures, rising sea levels, changing precipitation, and expansion of deserts in the subtropics. Warming is expected to be greater over land than over the oceans and greatest in the Arctic, with the continuing retreat of glaciers, permafrost and sea ice. Other likely changes include more frequent extreme weather events such as heat waves, droughts, heavy rainfall with floods and heavy snowfall;ocean acidification; and species extinctions due to shifting temperature regimes. Effects significant to humans include the threat to food security from decreasing crop yields and the abandonment of populated areas due to rising sea levels. Because the climate system has a large "inertia" and greenhouse gases will remain in the atmosphere for a long time, many of these effects will persist for not only decades or centuries, but for tens of thousands of years to come.

Possible societal responses to global warming include mitigation by emissions reduction, adaptation to its effects, building systems resilient to its effects, and possible future climate engineering. Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC), whose ultimate objective is to prevent dangerous anthropogenic climate change. Parties to the UNFCCC have agreed that deep cuts in emissions are required[22] and that global warming should be limited to well below 2.0 °C (3.6 °F) compared to pre-industrial levels,[b] with efforts made to limit warming to 1.5 °C (2.7 °F).

Public reactions to global warming and concern about its effects are also increasing. A global 2015 Pew Research Center report showed that a median of 54% of all respondents asked consider it "a very serious problem". Significant regional differences exist, with Americans and Chinese (whose economies are responsible for the greatest annual CO2 emissions) among the least concerned.
Two millennia of mean surface temperatures according to different reconstructions from climate proxies, each smoothed on a decadal scale, with the instrumental temperature record overlaid in black.
refer to caption and adjacent text
NOAA graph of global annual temperature anomalies 1950–2012, showing the El Niño Southern Oscillation
In the period from 1880 to 2012, the global average (land and ocean) surface temperature has increased by 0.85 [0.65 to 1.06] °C, multiple independently produced datasets confirm. In the period from 1906 to 2005, Earth's average surface temperature rose by 0.74±0.18 °C. The rate of warming almost doubled in the last half of that period (0.13±0.03 °C per decade, against 0.07±0.02 °C per decade).[28] Although the popular press often reports the increase of the average near-surface atmospheric temperature as the measure of global warming, most of the additional energy stored in the climate system since 1970 has gone into the oceans. The rest has melted ice and warmed the continents and the atmosphere.

Since 1979, the average temperature of the lower troposphere has increased between 0.12 and 0.135 °C (0.216 and 0.243 °F) per decade, satellite temperature measurements confirm.[30][31] Climate proxies show the temperature to have been relatively stable over the one or two thousand years before 1850, with regionally varying fluctuations such as the Medieval Warm Period and the Little Ice Age.

The warming evident in the instrumental temperature record is consistent with a wide range of observations, as documented by many independent scientific groups. Examples include sea level rise, widespread melting of snow and land ice,increased heat content of the oceans, increased humidity, and the earlier timing of spring events, e.g., the flowering of plants. The probability that these changes could have occurred by chance is virtually zero.

Regional trends and short-term fluctuations
File:Temperature anomalies arranged by country 1900 - 2016.ogg
Temperature anomalies arranged by country 1900–2016. Deviation from the 1951–1980 mean temperature. Visualization based on GISTEMP data.
Temperature increases vary a lot across the globe. Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C per decade against 0.13 °C per decade). Ocean temperatures increase more slowly than land temperatures because of the larger effective heat capacity of the oceans and because oceans lose more heat by evaporation.Since the beginning of industrialisation in the eighteenth century, the temperature difference between the hemispheres has increased due to melting of sea ice and snow in the North. In the past one hundred years, average arctic temperatures have been increasing at almost twice the rate of the rest of the world; however, arctic temperatures are also highly variable. Although more greenhouse gases are emitted in the Northern than in the Southern Hemisphere, this fact does not contribute to the difference in warming because the major greenhouse gases persist long enough to diffuse within as well as between the hemispheres.

The thermal inertia of the oceans and the slow responses of other indirect effects occasion the climate to take centuries or longer to adjust to past changes in forcings. One climate commitment study concluded that if greenhouse gases were stabilized at year 2000 levels, surface temperatures would still increase by about one-half degree Celsius, and another found that if they were stabilized at 2005 levels, surface warming could exceed a whole degree Celsius. Some of this surface warming will be driven by past natural forcings which are still seeking equilibrium in the climate system. One study using a highly simplified climate model indicates these past natural forcings may account for as much as 64% of the committed 2050 surface warming and their influence will fade with time compared to the human contribution.

Global temperature is subject to short-term fluctuations that overlay long-term trends and can temporarily mask them. The relative stability in surface temperature from 2002 to 2009, which has since been dubbed the global warming hiatus by the media and some scientists is an example of such an episode. 2015 updates to account for differing methods of measuring ocean surface temperature measurements show a positive trend over the recent decade.

Warmest years vs. overall trend
Sixteen of the seventeen warmest years on record have occurred since 2000. While record-breaking years attract considerable public interest, individual years are less significant than the overall trend. Some climatologists have criticized the attention that the popular press gives to "warmest year" statistics. In particular, ocean oscillations such as the El Niño Southern Oscillation (ENSO) can cause temperatures of a given year to be abnormally warm or cold for reasons unrelated to the overall trend of climate change. Gavin Schmidt stated "the long-term trends or the expected sequence of records are far more important than whether any single year is a record or not."

Initial causes of temperature changes (external forcings)
refer to caption and adjacent text
CO2 concentrations over the last 400,000 years.
refer to caption and adjacent text
Greenhouse effect schematic showing energy flows between space, the atmosphere, and Earth's surface. Energy exchanges are expressed in watts per square metre (W/m2).
Main article: Attribution of recent climate change
By itself, the climate system may generate random changes in global temperatures for years to decades at a time, but long-term changes emanate only from so-called external forcings. These forcings are "external" to the climate system, but not necessarily external to Earth. Examples of external forcings include changes in the composition of the atmosphere (e.g., increased concentrations of greenhouse gases), solar luminosity, volcanic eruptions, and variations in Earth's orbit around the Sun.

Greenhouse gases
Main articles: Greenhouse gas, Greenhouse effect, Radiative forcing, Carbon dioxide in Earth's atmosphere, and Earth's energy budget
See also: List of countries by carbon dioxide emissions and History of climate change science
The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in a planet's atmosphere warm its lower atmosphere and surface. It was proposed by Joseph Fourier in 1824, discovered in 1860 by John Tyndall, was first investigated quantitatively by Svante Arrhenius in 1896,[58] and its scientific description was developed in the 1930s through 1960s by Guy Stewart Callendar.

refer to caption and image description
Annual world greenhouse gas emissions, in 2010, by sector.
refer to caption and image description
Percentage share of global cumulative energy-related CO2 emissions between 1751 and 2012 across different regions.
On Earth, an atmosphere containing naturally occurring amounts of greenhouse gases causes air temperature near the surface to be about 33 °C (59 °F) warmer than it would be in their absence. Without the Earth's atmosphere, the Earth's average temperature would be well below the freezing temperature of water. The major greenhouse gases are water vapour, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%. Clouds also affect the radiation balance through cloud forcings similar to greenhouse gases.

Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. According to work published in 2007, the concentrations of CO2 and methane had increased by 36% and 148% respectively since 1750. These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores.Less direct geological evidence indicates that CO2 values higher than this were last seen about 20 million years ago.

Fossil fuel burning has produced about three-quarters of the increase in CO2 from human activity over the past 20 years. The rest of this increase is caused mostly by changes in land-use, particularly deforestation. Another significant non-fuel source of anthropogenic CO2 emissions is the calcination of limestone for clinker production, a chemical process which releases CO2. Estimates of global CO2 emissions in 2011 from fossil fuel combustion, including cement production and gas flaring, was 34.8 billion tonnes (9.5 ± 0.5 PgC), an increase of 54% above emissions in 1990. Coal burning was responsible for 43% of the total emissions, oil 34%, gas 18%, cement 4.9% and gas flaring 0.7%.

In May 2013, it was reported that readings for CO2 taken at the world's primary benchmark site in Mauna Loa surpassed 400 ppm. According to professor Brian Hoskins, this is likely the first time CO2 levels have been this high for about 4.5 million years. Monthly global CO2 concentrations exceeded 400 ppm in March 2015, probably for the first time in several million years. On 12 November 2015, NASA scientists reported that human-made carbon dioxide continues to increase above levels not seen in hundreds of thousands of years; currently, about half of the carbon dioxide released from the burning of fossil fuels is not absorbed by vegetation and the oceans and remains in the atmosphere.

Global carbon dioxide emissions by country.
Over the last three decades of the twentieth century, gross domestic product per capita and population growth were the main drivers of increases in greenhouse gas emissions. CO2 emissions are continuing to rise due to the burning of fossil fuels and land-use change.71 Emissions can be attributed to different regions. Attributions of emissions due to land-use change are subject to considerable

Emissions scenarios, estimates of changes in future emission levels of greenhouse gases, have been projected that depend upon uncertain economic, sociological, technological, and natural developments. In most scenarios, emissions continue to rise over the century, while in a few, emissions are reduced. Fossil fuel reserves are abundant, and will not limit carbon emissions in the 21st century.Emission scenarios, combined with modelling of the carbon cycle, have been used to produce estimates of how atmospheric concentrations of greenhouse gases might change in the future. Using the six IPCC SRES "marker" scenarios, models suggest that by the year 2100, the atmospheric concentration of CO2 could range between 541 and 970 ppm. This is 90–250% above the concentration in the year 1750.

The popular media and the public often confuse global warming with ozone depletion, i.e., the destruction of stratospheric ozone (e.g., the ozone layer) by chlorofluorocarbons. Although there are a few areas of linkage, the relationship between the two is not strong. Reduced stratospheric ozone has had a slight cooling influence on surface temperatures, while increased tropospheric ozone has had a somewhat larger warming effect
.

Sort:  

Followed and upvoted
and upvote my all post tooo

Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested in:
https://en.wikipedia.org/wiki/Global_warming

Followed and upvoted
and upvote my all post tooo

Really good knowledge

We all human should think about it

Very nice article..

It is not about if it's happening, or about what to do about it. We know the answers to these questions. It is about how to implement the changes we know we need to implement in society? And how to do it fast enough?

TIme to change the Thinking , Expoliint the nature must be a crime . Peace out World

nice,,,,,,,,

Congratulations @rehan9! You received a personal award!

Happy Birthday! - You are on the Steem blockchain for 2 years!

You can view your badges on your Steem Board and compare to others on the Steem Ranking

Vote for @Steemitboard as a witness to get one more award and increased upvotes!