[알차니의 머신러닝] 드디어 완성된 specialization
유투브는 어떻게 나에게 동영상 제안을 할까?
이 질문을 시작으로 머신러닝, 딥러닝에 대한 궁금증이 생겨서 강의를 찾던 중에 coursera에서 Deep learning specialization 이라는 프로그램을 발견하게 되었습니다. 프로그래밍이라는 것이 그리 친숙하지 않은 시점이라 python, tensorflow 등을 따로 또 찾아가면서 공부를 했었는데 마침네 그 종지부를 찍었네요!
총 5개의 큰 강의로 구성이 되어있었던 강의는
- Neural Networks and Deep Learning
- Improving Deep Neural Networks: Hyperparameter tuning
- Regularization and Optimization Structuring Machine Learning Projects
- Convolutional Neural Networks
- Sequence Models
으로 구성이 되어있었습니다. 영어로 되어있다보니 시간도 많이 걸렸지만 머신러닝과 딥러닝에 대해서 알면 알수록 매력적이라 빠져나올 수 없었습니다. 물론 월마다 나가는 돈이 아까워 악착같이 한 것도 있지만...
어찌되었든 뿌듯하고 더욱더 재미있는 여정이 앞으로 펼쳐질것 같아 기대가 됩니다. 이제 들을 강의로는 reinforcement learning 인데 이 부분도 무사히 마치길 기대해봅니다.
이런 어려운 길을 가고 계신 분이셨군요!
unsupervised learning 까지 차근차근 알려주시길 기다리고 있겠습니다~!
upvote for me please? https://steemit.com/news/@bible.com/2sysip
몇년전에 딥러닝이란게 이슈화되기 이전에
마르코프체인이란것으로 동영상제안하고 구글검색도 그 알고리즘으로 검색상위노출된다고 들었었는데요.......
제로마르코프체인은 단순확율의 분배에요...
가령 유투브에서 pop송뮤직을 10%들었고 클래식뮤직을 90%들었다면
클래식뮤직 90% pop뮤직 10%노출되는게 제로마르코프체인이고요
항상 보여지는 화면이 이비율로 구성되고요
1차마르코프체인은 두단계입니다.
내가 전에 어떤 영상을 틀었냐에 따라 화면구성이 바껴집니다.
pop송뮤직다음에 힙합들은게 90% 올드팝들은게 10%라면
클래식 들은다음에 국악들은게 60% 재즈가 40%라면
내가 전에 pop송뮤직들었으면 힙합90% 올드팝 10%로 갈라지고
클리식들었다면 국악60% 재즈40%이렇게 갈라질겁니다.
보통마르코프체인은 N차까지하고 N차값이 많을수록 정밀해지지만
그만큼 m^N승을 계산하여야하는 것으로 알고있습니다.
마르코프체인알고리즘으로 행동패턴분석인지라던가 등등 많은 분야에 쓰이는것으로 알고있어요
대박! 좋은 정보 감사합니다~
엇 저는 이제 첫부분 시작하고 있는데 재밌게 보고 있어요 ㅋㅋ.
ipython제공해주는 것도 마음에 들고.